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Observation of Topological Edge States in Thermal Diffusion
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on classifications of matter and, as a 
consequence, many fundamentally new 
topological electronic materials have been 
discovered, including topological insula-
tors[5–8] and topological semimetals.[9] In 
parallel, the analogy between the quantum 
mechanical and classical waves has 
inspired the generalization of numerous 
concepts in condensed matter physics to 
the classical-wave systems such as elec-
tromagnetic, acoustic, and mechanical 
wave systems. Intuitively, one can trans-
form the governing equations of classical 
waves (e.g., Maxwell equations for elec-
tromagnetic waves) into the Hamiltonian 
formulation. Following this methodology, 
topological phases initially proposed for 
quantum-mechanical waves have been 

recently realized in various classical-wave systems,[10–17] ena-
bling many practical applications such as topological lasers,[18–21] 
robust optical delay lines,[22] and high quality on-chip commu-
nication.[23,24] Recent advances have further extended the topo-
logical states from Hermitian to non-Hermitian wave systems, 

Topological band theory predicts that bulk materials with nontrivial topo-
logical phases support topological edge states. This phenomenon is universal 
for various wave systems and is widely observed for electromagnetic and 
acoustic waves. Here, the notion of band topology is extended from wave 
to diffusion dynamics. Unlike wave systems that are usually Hermitian, 
diffusion systems are anti-Hermitian with purely imaginary eigenvalues 
corresponding to decay rates. By direct probe of the temperature diffusion, 
the Hamiltonian of a thermal lattice is experimentally retrieved, and the 
emergence of topological edge decays is observed within the gap of bulk 
decays. The results of this work show that such edge states exhibit robust 
decay rates, which are topologically protected against disorder. This work 
constitutes a thermal analogue of topological insulators and paves the way to 
exploring defect-immune heat dissipation.

ReseaRch aRticle

1. Introduction

The topology of crystal’s band structures has gained increasing 
attention in condensed matter physics since the 1980s.[1–4] The 
topological band theory has revolutionized our understanding 
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particularly parity-time symmetric wave systems,[25] enabling 
many intriguing phenomena such as parity-time symmetric 
topological edge states,[26] topological funneling,[27] bulk Fermi 
arcs,[28] and many others.[29–32]

Another important natural existing physical dynamics, 
known as diffusion, has been widely studied in the context of 
heat transfer,[33] Brownian motion,[34] and so on. Unlike fields 
in wave systems (quantum mechanical or classical), diffusive 
fields are not governed by “frequency”, and thus the phase no 
longer depends on time but solely on space. These fundamental 
differences between wave and diffusive fields prevent the direct 
extension of the band theory and topological concepts from 
wave to diffusion systems. A recent theoretical attempt has 
shown that the concept of topological phases can be applied to 
the heat diffusion, which is manifested as topologically robust 
interfacial thermal decay rates within the gap of bulk decay 
rates.[35] Yet, such topological states of diffusion have not been 
experimentally observed.

Here, we transfer the notion of topological phases to diffu-
sion dynamics and explore the topological heat diffusion experi-
mentally. Fundamentally different from the usually Hermitian 
topological states in wave systems,[36–38] the topological states in 
diffusion systems are intrinsically anti-Hermitian, and thus the 
corresponding eigenvalue ω is purely imaginary. Such an imag-
inary eigenvalue corresponds to a decay rate γ as γ = Im(ω).[39] 
In other words, for diffusive dynamics, the topological band 
theory applies to the decay rates rather than to the frequencies 
as in wave systems. As a physical consequence, the topological 
thermal state decays exponentially in time with a protected rate, 
while the topological wave state oscillates periodically in time 
at a protected frequency.[40] Moreover, as the phase of fields in 
the topological diffusion system is time-invariant, this remark-
able property enables us to readily retrieve the Hamiltonian via 
direct measurement of the temperature distribution in time. 
We highlight that the experimental retrieval of the Hamiltonian 
is fundamentally important in the investigation of topological 
physics but has never been directly accomplished so far.

2. Results and Discussion

For the practical implementation of our topological diffusion 
system, we construct a 1D thermal lattice consisting of periodic 
aluminum disks (aluminum alloy 6061-T6) with radius r = 1 cm 
connected via aluminum channels, with height h  = 1  cm and 
lattice constant a = 7 cm (see the design and photograph of the 
sample in Figure 1a,b). The straight and meandering channels 
are judiciously designed in our experiment to control the effec-
tive thermal diffusivity (denoted as D1 or D2) between two disks. 
The structured channels have geometric parameters d = 2 mm, 
w = 1 mm, and g = 1.3 mm.

The demonstrated topological thermal lattice is an excellent 
thermal analogue of the Su–Schrieffer–Heeger (SSH) model 
that initially describes electrons hopping on an atomic chain 
(see the upper panel of Figure 1a). The disk in the thermal lat-
tice corresponds to the atom in the original SSH model while 
staggered effective diffusivities D1 and D2 between disks mimic 
staggered hopping amplitudes t1 and t2 between atoms. Very 
recently, a theoretical study[35] showed that, in a lattice structure 

similar to our design, the governing discretized thermal diffu-
sion equation takes the form as (see derivation details in Sec-
tion S1, Supporting Information),

∂ ∂ = −( )/ i ( )T t t HT t  (1)

where the solution =( ) [ ( ) ( ) ( ) ]1 2T t T t T t T tj
T

x
� �  of the 

discretized thermal diffusion equation is the temperature field 
as a function of spatial and temporal coordinates. The element 
of the temperature field ( )T t  corresponds to the on-site tem-
perature ( )T tjx  (with jx corresponding to the site index), which 
is solely dependent on time only if the site is sufficiently small 
and highly conductive. As each thermal disk only couples to 
the two nearest neighbouring ones, the corresponding Hamil-
tonian H of the system is tridiagonal. As a result, the designed 
thermal topological lattice with N disks depicted in Figure  1b 
has an N × N Hamiltonian given by
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where D1 and D2 denote the effective intradiffusivity and inter-
diffusivity, respectively, normalized to (a/2)2 (see derivation 
details in Sections S1 and S2, Supporting Information). Note 
that the values of D1 and D2 depend on the geometry of the 
unit cell, for example, D1  > D2 corresponds to the unit cell 
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Figure 1. Design of a topological thermal lattice with periodic boundary 
condition. a) Comparison between the SSH model and the topological 
thermal lattice. The effective diffusivity of the thermal field between two 
disks is determined by the structured channel. The staggered effective 
diffusivities D1 and D2 of the thermal field in the thermal lattice corre-
spond to the staggered hopping amplitudes t1 and t2 in the SSH model. 
b) Photo graph of the topological thermal lattice consisting of 12 unit cells 
and 24 sites. Two types of unit cells are highlighted: the one enclosed by 
the solid curve, and the other enclosed by the dashed curve. c) Sche-
matics of the temperature distribution in the thermal lattice when site 1 
of the structure is heated. The sites are numbered clockwise.
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with a straight intracell channel and a meandering intercell 
channel (as indicated by the region enclosed by the solid curve 
in Figure  1b), while D1 < D2 corresponds to the unit cell with 
meandering intracell channel and straight intercell channel 
(as indicated by the region enclosed by the dashed curve in 
Figure 1b). In this way, the diffusion equation is related to the 
well-known SSH model initially proposed for the quantum sys-
tems. As both D1 and D2 are real numbers in our case, H is 
an anti-Hermitian version of Hamiltonian in the original SSH 
model, and its eigen values ω are purely imaginary.

We first measure the bulk states in the topological thermal 
lattice with the periodic boundary condition. As shown in 
Figure 1b,c, the fabricated sample has 12 unit cells in total. An 
igniter is used to locally heat up an individual site numbered 
as jx of the designed structure. To obtain a set of on-site tem-
peratures on the structure, a thermal camera (FLIR T620) is 
employed to record the transient heat transfer in the sample at 
different moments. We implement 24 groups of measurement 
by heating up each site in sequence to construct the temperature 
matrix =T( ) [ ]1 2 24t T T T�� , where Ti is the temperature 
field composed of 24 on-site temperatures. The transient heat 
transfer process follows = −( ) (0)iT t e THt , and, therefore, the real-
space Hamiltonian can be retrieved from the measured tempera-
ture matrix as

=
−

−

i
ln[T( )T ( )]

exp
2

1

1

2 1

H
t t

t t

� �
 (3)

where T( )1t�  and T( )2t�  correspond to temperature matrices at 
different measurement moments t1 and t2, respectively. In the 
experiment, we choose t1  = 0.1  min and t2  = 0.4  min. Thanks 
to the time-invariant phase of diffusion fields, the retrieval 
procedure of the real-space Hamiltonian is greatly simpli-
fied in our case. In comparison, the measurement of the 
real-space Hamiltonian is fundamentally challenging in wave 
systems, whose phase varies rapidly over time. The measured  

24 × 24 real-space Hamiltonian Hexp is provided in Supporting 
Information databases.

By solving the eigenvalues of the retrieved Hamiltonian 
Hexp, we obtain the spectrum of the thermal decay rates, and 
observe a complete decay-rate gap opened up between 1.67 
and 1.85 min–1 (see the black dots in Figure 2a). Moreover, the 
retrieved Hamiltonian enables us to determine the topological 
invariants of the decay-rate bands (see calculation details in 
Section S5, Supporting Information). We have obtained the 
topological invariants of two types of unit cells in our experi-
ments, that is, the one with D1 > D2, and the other with D1 < D2. 
As shown in Figure 2, although the spectra of decay rates for 
two unit cells are identical, the trajectories of the endpoints of 
the pseudospin vector = +x yP P Px y� �  are different, that is, when 
D1 > D2 (D1 < D2), the trajectory does not (does) wind around 
the origin, corresponding to the topologically trivial (nontrivial) 
phase. Here, the pseudospin vector P  is determined by Bloch 
functions retrieved from the measured Hamiltonian (see more 
explanations in Section S5, Supporting Information), and the 
winding number equals the loop number that its end point 
encircles the origin as the wavevector spans the entire Brillouin 
zone. As our lattice preserves sublattice symmetry, the winding 
number 0 (1) corresponds to a Zak phase of 0 (π). Our experi-
mentally retrieved results are consistent with that using the 
SSH model, as shown in Figure 2.

Topological edge states arise at the domain wall between 
two topologically distinct thermal lattices. To illustrate this 
point, we experimentally probe the edge states at two types of 
domain walls, that is, domain wall A and domain wall B, as 
depicted in Figure 3a. In the domain wall A (B), the trivial and 
nontrivial domains are connected via a meandering (straight) 
channel, which mimics weak (strong) coupling (Figure  3b). 
From the measured real-space Hamiltonian, we observe two 
edge states (denoted as edge states I and II in the following dis-
cussion) emerging inside the decay-rate gap of bulk modes (see 
Figure  3c). Edge state I (II) shows a symmetric (asymmetric) 
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Figure 2. Experimentally retrieved decay rates of eigenmodes and topological invariants. a) Spectrum of decay rates retrieved from measured Hamil-
tonian. b) The paths of the endpoints of the pseudospin vector = +x yP P Px y� �  on the PxOPy plane (i.e., the equatorial plane of the Bloch sphere) for the 
lower band of decay rates. The winding number equals the loop number of the endpoints of pseudospin vector that encircles the origin, when kx goes 
through the Brillouin zone from 0 to 2π. The evolution trajectory of endpoints of the pseudospin vector is indicated by dashed arrows. In the left part 
of (b), the studied unit cell has D1 > D2, while in the right part, the studied unit cell has D1 < D2.
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mode profile at domain wall A (B), as depicted in Figure 3d. The 
difference between two edge states results from the different 
effective diffusivities of channels surrounding two domain 
walls. At domain wall A, site 12 and its neighboring sites are 
connected with the meandering channels of low effective diffu-
sivity. Thus, most energy of edge state I is trapped on site 12. At 
domain wall B, site 24 and its neighboring sites are connected 
with the straight channels of high effective diffusivity. Thus, 
the energy of edge state II occupies site 24 and its neighboring 

sites, that is, site 1 and site 23. Owing to the emergence of these 
edge states, the domain-wall temperature decays at a different 
rate from that in the bulk. To verify this phenomenon experi-
mentally, we excite edge and bulk states based on the mode dis-
tributions (Figure 3f–h), for example, edge state I (II) is excited 
by heating up site 12 (site 1) in the vicinity of the corresponding 
domain wall, while the bulk states are excited by heating up 
sites 3 and 4 in the bulk domain. Note that while the efficient 
excitation of the edge state II requires heating up site 1 and 

Adv. Mater. 2022, 2202257

Figure 3. Observation of topological edge states. a) Photograph of the topological thermal lattice with domain walls. The dashed lines indicate the posi-
tions of domain walls. b) Schematics of domain wall A and B, respectively. c,d) Retrieved decay-rate bands and mode profiles in the topological thermal 
lattice. e) Time evolution of normalized temperature for edge states and bulk states. The temperature is normalized with Tnorm = ln [(T − Tf)/(Ti − Tf)], 
where Ti is the temperature of heated site at t = 0 min and Tf is the room temperature. One exponential function with a decay rate of 0.52 (0.91) is 
sufficient to fit the measured time evolution of temperature for edge state I (edge state II), while two exponential functions with decay rates of 2.10 and 
0.29 are required to well fit the time evolution of temperature for bulk states. f–h) Temperature field distribution for edge states and bulk states. The 
temperature field distributions are recorded at t = 0 min, t = 1 min, and t = 2 min, respectively.
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cooling down site 23 simultaneously to match the temperature 
distribution of the eigenfunction, we only heat up site 1 in the 
experiment. Despite this experimental simplification, we find 
that solely heating up site 1 can sufficiently make the edge state 
II and thus, its diffusion behaviors dominate (see mode decom-
position in Figure S10, Supporting Information). Then, the 
decay rate of each mode is determined by measuring the tem-
perature of the heated site. Exponential functions are used to fit 
the temperature evolution to reveal different decaying processes 
of edge and bulk states (Figure 3e). Specifically, a single expo-
nential function is sufficient to fit the temperature evolution of 
edge states (with the corresponding decay rate 0.52 min−1 for 
edge state I and 0.91 min−1 for edge state II). In other words, the 
edge states, once excited, decay at a constant rate in excellent 
agreement with the theoretical prediction in Figure  3c. Such 
a decay rate is insensitive to the environmental temperature, 
but is susceptible to the convection (Section S9, Supporting 
Information). In sharp contrast, two exponential functions are 
required to successfully fit the temperature evolution of bulk 
states at domain sites, with corresponding decay rates 2.10 and 
0.29 min−1, as the temperature decays rapidly at the beginning 
and more gently as time evolves. Such instability of the decay 
rate results from the excitation of multiple bulk modes in the 
bulk. Note that the excitation of a specific bulk state requires 
precisely assigning the initial on-site temperature according to 
the corresponding eigenfunction, while in our experiment, the 
implemented source profile shown in Figure 3h is a combina-
tion of multiple states (see mode decomposition in Figure S10, 
Supporting Information). The modes in the upper band of the 
decay rates are responsible for the fast decay in the early stage, 
while the modes in the lower band dominate in the slow decay 
after a while.

We also highlight that the two edge states are topologically 
protected and thus, robust against disorders. As our numer-
ical calculations demonstrate that the effective diffusivity of 
the thermal channel is highly dependent on its height (see 
Figure S12, Supporting Information), we introduce a global dis-
order to the topological thermal lattice by randomly changing 
the height of each thermal channel. The measured results 

prove that the decay rate of edge states is robust against the 
disorders (see domain-wall temperature evolution and corre-
sponding field distribution in Figure 4). This robustness is also 
corroborated by the experimentally retrieved spectrum of decay 
rates: the disorder dramatically changes the decay rates of the 
bulk states, for example, the decay-rate gap reduces from 0.18 to 
0.10 in the presence of 30% disorders, whereas the topological 
edge states (i.e., states I and II) are immune to perturbations 
in diffusivity. The defect-immune decay rates and profiles make 
topological thermal edge states different from a general class of 
localized thermal modes without the topological protection (see 
more explanations in Section S10, Supporting Information).

3. Conclusion

In conclusion, our work provides the first experimental demon-
stration of the nontrivial topological phase and topological edge 
state in a diffusion system. Strikingly, our results hint that the 
notion of topological phases can apply to a general class of dif-
fusion systems. Despite the time-invariant nature of our system 
studied here, the topological concept in principle can also be 
extended to time-dependent thermal diffusion systems.[39] 
Meanwhile, the powerful tool of topological analysis shown 
here could inspire future research in thermal functional mate-
rials with different types of topological phases in one, two, and 
three dimensions, including 2D and 3D topological insulators, 
Weyl semimetals, and high-order topological insulators.[41,42] 
The demonstrated topological states could find applications in 
temperature management and thermal information processing 
with topologically enabled robustness.[43]

4. Experimental Section
Experimental Method: The samples in the experiment were made of 

aluminum alloy 6061-T6 with the physical properties given by ref. [44]. 
The geometry was fabricated by wire electrical discharge machining with 
a fabrication tolerance of 0.1 mm. In the experiment, we used an igniter 
to heat up the designed sample locally (see the experimental setup in 
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Figure 4. Influence of disorders on the topological edge states. a) Time evolution of normalized temperature for edge states in non-disordered and 
disordered systems, respectively. b,c) Temperature field distribution for edge states. The temperature field distributions are recorded at t = 0 min,  
t = 1 min, and t = 2 min, respectively.
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Figure S5, Supporting Information). In each group of measurement, 
only one site was heated up. After a specific heating duration Δt, the 
FLIR T620 thermal camera was deployed to image the transient heat 
transfer in the thermal structure in time immediately. We  had done 
24 groups of measurement by heating up all the sites in the thermal 
structure accordingly to construct temperature matrix. The real-
space Hamiltonian in the experiment was retrieved by extracting the 
temperature matrix T( )t�  when t1 = 0.1 min and t2 = 0.4 min. The heating 
duration was Δt = 0.3 min.

Numerical Method: COMSOL Multiphysics was deployed to 
simulate the transient heat transfer process in the thermal structures. 
The numerical parameter setups for aluminum alloy 6061-T6 were: 
thermal conductivity k  = 180 W m−1 K−1, density ρ  = 2700  kg m−3, and 
heat capacity Cρ = 978 J kg−1 K−1. In the simulation, we also considered 
the convective heat flux of the environment with the heat transfer 
coefficient for convection being 18 W m−2 K−1. Only one site in the 
thermal structure was heated up in each group of measurement. In 
each group of measurements, 24 on-site temperatures were obtained by 
recording the transient heat transfer of the thermal structure in time. 
24 groups of measurements were conducted by heating up 24 sites in 
sequence, leading to 24 linearly independent temperature fields. The 
temperature matrix T( )t�  was constructed by the 24 temperature fields. 
The real-space Hamiltonian in simulation was retrieved by extracting 
the temperature matrix T( )t�  at t1 = 0.4 min and t2 = 0.7 min. The room 
temperature was set as 294.15 K. The initial temperature on the heated 
site was set as 333.15 K.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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