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For the classification of topological phases of matter, an important consideration is whether a system is
spinless or spinful, as these two classes have distinct symmetry algebra that gives rise to fundamentally
different topological phases. However, only recently has it been realized theoretically that in the presence of
gauge symmetry, the algebraic structure of symmetries can be projectively represented, which possibly
enables the switch between spinless and spinful topological phases. Here, we report the experimental
demonstration of this idea by realizing spinful topological phases in “spinless” acoustic crystals with
projective space-time inversion symmetry. In particular, we realize a one-dimensional topologically gapped
phase characterized by a 2Z winding number, which features double-degenerate bands in the entire
Brillouin zone and two pairs of degenerate topological boundary modes. Our Letter thus overcomes a
fundamental constraint on topological phases by spin classes.

DOI: 10.1103/PhysRevLett.130.026101

The concepts of topology and symmetry have revolu-
tionized many branches of physics, ranging from con-
densed matter physics [1–4] to cold atoms [5], photonics
[6–9], acoustics [10–21], and mechanics [22], as mani-
fested by the classification of topological phases of matter.
A fundamental dichotomy for topological classification is
whether the studied systems are spinful or spinless.
Remarkably, under internal or space group symmetries,
these two spin classes can exhibit distinct topological
phases. A representative example is the space-time inver-
sion symmetry PT, where time-reversal symmetry (T) and
space inversion symmetry (P) are combined together
[23,24]. For the spinful class, it satisfies ðPTÞ2 ¼ −1,
enforcing double-degenerate bands in the entire Brillouin
zone (BZ) [Fig. 1(a)]. The time-reversal symmetry, together
with particle-hole symmetry, further gives rise to many
intriguing topological phases including one-dimensional
(1D) topological superconductors or insulators in class
DIII, which feature a pair of doubly degenerate topological
boundary states at each end [25–27]. By contrast, for the

spinless class, it satisfies ðPTÞ2 ¼ 1, dictating real non-
degenerate band structures [Fig. 1(b)] that further lead to its
own unique topological phases, such as real Dirac semi-
metals [28]. Therefore, the spin class seems to impose
fundamental constraints on the possible topological phases
that a physical system can realize.
However, recent theoretical advances have remarkably

revealed that [29], in the presence of gauge symmetry, the
above fundamental limitation can be broken; i.e., it is
possible to realize spinful (spinless) topological phases
previously unique in spinless (spinful) systems. The under-
lying mechanism is that, with gauge symmetry, the crys-
talline symmetries of a system should be projectively
represented, which further fundamentally modifies the
algebraic structure of the symmetry group. For example,
in the presence of gauge symmetry, the algebraic structure
of translation symmetry can be protectively represented,
which enables novel topological phases beyond the conven-
tional topological classification, such as Möbius insu-
lators with Z2 topological invariants and Möbius-twisted
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boundary states [30,31]. Another example is that with the
gauge symmetry, the space inversion symmetry P will be
projectively represented asP ¼ GP [29,32–34], whereG is
a gauge transformation. Properly choosingG, the projective
PT symmetry (i.e., PT) can satisfy ðPTÞ2 ¼ 1 [35] for
spinful systems [Fig. 1(c)], or satisfy ðPTÞ2 ¼ −1 for
spinless systems [Fig. 1(d)]. This surprisingly suggests that
the projective PT symmetry can exchange the fundamental
symmetry algebra of spinless and spinful systems, enabling
the switching between spinless and spinful topological
phases. Note that there exist fundamental differences
between the previously reported projective translation
symmetry [30,31] and the projective PT symmetry [35]
experimentally studied here in underlying symmetries,
topological phases, and topological features. First, the
phenomenon of band degeneracy originates from different
underlying symmetries for these two cases. Second, the
projective translation symmetry possesses Möbius insulator
phases characterized by a Z2 topological invariant, while
projective PT symmetry guarantees a 1D DIII class topo-
logical phase characterized by a 2Z topological invariant.
Third, the novel topological phases with projective trans-
lation symmetry are featured by the Möbius-twisted edge
bands, while the spinful topological phases with projective
PT symmetry are featured by the double-degenerate topo-
logical boundary modes (Majorana-like Kramers pairs).
Here, we experimentally demonstrate this idea by

realizing spinful topological phases in spinless acoustic
crystals with projective PT symmetry. Acoustic crystals
have hitherto provided a versatile platform to study various

topological phases under the framework of quantum-
classical analogies [36–47]. Moreover, the positive and
negative couplings [48–51] can be easily implemented in
acoustic crystals, which are essential to constructing a Z2

gauge field that can exchange the symmetry algebra between
spinless and spinful systems. In particular, we experimen-
tally realize in an acoustic crystal a DIII class 1D topologi-
cally gapped phase characterized by a 2Z winding number,
an acoustic analog of a 1D T-invariant p-wave topological
superconductor [27,52,53]. Such a topological phase fea-
tures double-degenerate bands and two pairs of degenerate
topological boundary modes which were previously unique
in spinful systems [54–57]. The former is protected by time-
reversal symmetry and termed asKramers doublet, while the
latter is termed as Majorana-like Kramers pairs, which are
protected by time-reversal symmetry and effective particle-
hole symmetry [23,26].Moreover, we observe an unconven-
tional topological phase transition and four topological
interface states at the domain wall between two nontrivial
topological acoustic crystals with opposite nonzero 2Z
winding numbers (ν ¼ �2).
To experimentally observe spinful topological phases in

a spinless system, we design and fabricate a 1D acoustic
crystal, as shown in Fig. 2(a). The experimental sample is
fabricated with a standard three-dimensional (3D) stereo-
lithography technique, and the printing material (photo-
sensitive resin) can be considered as hard walls, which
enclose a hollow region filled with air. A unit cell of the
acoustic crystal is shown in Fig. 2(b), which consists of 8
cylindrical resonators with a height of h ¼ 20 mm and a
radius of r0 ¼ 10 mm and 20 coupling tubes (with radii of
r1, r2, ry, rzp, and rzn). Coupling tubes with positive and
negative coupling coefficients are indicated by blue and red
colors, respectively. The sign of the coupling coefficients in
the acoustic crystals can be determined by the connection
positions of the coupling tubes and we adopt bending tubes
to realize the negative couplings and straight tubes to
realize the positive couplings that exhibit good consistency
(see details in Supplemental Material [58]).
The fabricated sample in Fig. 2(a) follows a 1D spinless

tight-binding model with positive and negative couplings,
as shown in Fig. 2(c). Each unit cell (indicated by a gray
cube) has 8 sites (indicated by white spheres). The positive
(negative) couplings between nearest-neighbor sites are
indicated by blue (red) bonds and labeled as t with different
subscripts, where ty and tz correspond to the coupling
coefficients along y and z directions, respectively; td;1 (to;1)
and td;2 (to;2) are the intracell and intercell couplings along
the x direction, respectively. The Hamiltonian of the tight-
binding model shown in Fig. 2(c) can be written as

H ¼ tyΓ100 þ tzΓ301 þ
X

fs¼d;og

�
0 us
u�s 0

�
⊗ Ms; ð1Þ

where Γμνλ is defined as Γμνλ ¼ ρμ ⊗ τν ⊗ σλ. ρμ, τν, and
σλ are Pauli matrices and μ; ν; λ ¼ 0; 1; 2; 3. Ms is a

(a) (c)

(b) (d)

FIG. 1. Switching spinless and spinful topological phases with
projective PT symmetry. (a) PT symmetry satisfies ðPTÞ2 ¼ −1
for spinful systems, enabling topological phases with Kramers
double-degenerate band structures. (b) PT symmetry satisfies
ðPTÞ2 ¼ 1 for spinless systems, enabling topological phases with
real nondegenerate band structures. (c),(d) Switching between
spinful and spinless phases via projective PT symmetry.
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diagonal matrix. When its subscript “s” is written as
“d” or “o”, we have Md ¼ diagð1; 0; 0; 1Þ and Mo ¼
diagð0; 1; 1; 0Þ. The Bloch functions in the Hamiltonian
are described as ud¼ td;1þtd;2e−ik and uo ¼ to;1 þ to;2e−ik,
respectively. With the Hamiltonian in Eq. (1), we then
investigate the projective PT symmetry of the designed
configuration with spinless character. In our case, T̂ and P̂
operators can be defined as T̂ ¼ K̂ and P̂ ¼ Γ111Î,
respectively. Both the time-reversal symmetry T and
the space inversion symmetry P preserve the spin of
the Hamiltonian in Eq. (1); thus the space-time inver-
sion symmetry satisfies ðPTÞ2 ¼ 1 (see details in the
Supplemental Material [58]). In particular, the negative
and positive couplings in our system can construct a Z2

gauge field with Z2 ¼ f�1g. In Fig. 2(d), we present the
front view (x-z plane) of the tight-binding model. It can be

seen that within each plaquette (indicated by a dashed
rectangular box), there are one negative and three positive
coupling bonds, and thus encloses a π gauge flux. Gauge
transformation (G) on the Z2 gauge field is defined as
G ¼ Γ003 and satisfies [29,72]

½G; T� ¼ 0; fG;Pg ¼ 0; G2 ¼ 1: ð2Þ

Here, the gauge transformation G only swaps the negative
and positive coupling coefficients along the z direction,
while keeping other coupling coefficients unchanged. The
gauge transformation process is schematically illustrated in
Fig. 2(d).
It can be seen that the gauge flux in each plaquette is

invariant under the gauge transformation G (see details
in the Supplemental Material [58]). In the presence of
gauge symmetry, the space inversion symmetry operator P
can be projectively represented as P ¼ GP; thus
P2 ¼ ðGPÞ � ðGPÞ ¼ −ðPÞ2 ¼ −1. Hence, the projective
PT symmetry for the system satisfies ðPTÞ2 ¼ −1 (see
details in the Supplemental Material), indicating that the
Kramers double-degenerate band structures previously
unique to spinful systems are realizable in a spinless
system under projective PT symmetry. Two pseudospins
can be defined as ψþ ¼ Uψ1 and ψ− ¼ Uψ2, where ψ1 and
ψ2 are two eigenstates of the Hamiltonian HðkÞ and U is a
unitary transformation, U ¼ eðiπ=4ÞΓ100e−ðiπ=4ÞΓ133 . When the
pseudo time-reversal symmetry is defined as PT, the

pseudospin satisfies ψþ→
PT

ψ−→
PT − ψþ→

PT − ψ−.
Next, we demonstrate the Kramers doublet of the

designed 1D acoustic crystal. Here, we set ry ¼ 2.2 mm,
rzn ¼ 2.7 mm, rzp ¼ 2.9 mm, ðr1 þ r2Þ ¼ 6.2 mm, and
ðr1 − r2Þ ¼ Δr. To obtain the complete phase diagram,
we numerically solve the band structures of the 1D acoustic
crystals with a finite element method (commercial software
COMSOL MULTIPHYSICS). We sweep Δr from −2.2 to
2.2 mm, and plot the eigenfrequency spectrum as a function
of Δr and wave vector kx in Fig. 2(e). It can be seen that
there exist four Kramers double-degenerate bands guaran-
teed by the projective PT symmetry ðPTÞ2 ¼ −1, and the
targeted band gap closes atΔr ¼ 0with a topological phase
transition.
The Hamiltonian in Eq. (1) can be decomposed into two

off-diagonal blocks on account of its sublattice symmetry S.
Therefore, the winding number (ν) for the 1D acoustic
crystal can be calculated by one of the two decomposed
blocks [29]. In contrast to the conventional Su-Schrieffer-
Heeger model, which is characterized by an integer wind-
ing number of Z, the designed 1D acoustic crystal is
characterized by a winding number restricted to an even
integer v ¼ 2Z (see details in the Supplemental Material
[58]). This acoustic crystal is classified into the DIII class
topological phase because it satisfies ðP̂T̂Þ2 ¼ −1 and
fP̂T̂; Ŝg ¼ 0, where Ŝ ¼ Γ333Î is a sublattice symmetry

(a)

(b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Experimental demonstration of Kramers double-
degenerate band structures. (a) Photograph of the fabricated
1D acoustic crystal sample with 15 unit cells along the x
direction. (b) Unit cell of the 1D acoustic crystal with a lattice
constant a. Red (blue) tubes represent negative (positive) cou-
plings. (c) Configuration for the tight-binding model of the 1D
acoustic crystal. Gray cubes: unit cell of the configuration. White
spheres: sites. Blue (red) bonds: positive (negative) couplings.
(d) Gauge transformation process (gray arrow) switches the sign
of couplings in the z direction, while keeping the synthetic gauge
flux π in each plaquette invariant. (e) Phase diagram of the
simulated band structures of the 1D acoustic crystal as a function
of the wave vector kx and the radius contrast Δr defined as
Δr ¼ ðr1 − r2Þ. (f) Evolution of the middle band gaps and
topological winding numbers (ν ¼ �2) as a function of Δr.
(g)–(i) Measured (background colors) and simulated (black solid
and cyan dashed lines) Kramers doublet of the 1D acoustic crystal
with (g) Δr ¼ −2.2 mm, (h) Δr ¼ 0 mm, and (i) Δr ¼ 2.2 mm,
respectively. The color scale indicates the measured acoustic
energy density.
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operator. The evolution of frequencies as a function ofΔr at
the BZ boundary (i.e., frequencies at kx ¼ �π=a) is shown
in Fig. 2(f), which clearly shows the band gap closure at
Δr ¼ 0. Winding numbers for systems with different Δr
are shaded by blue (ν ¼ −2) and orange (ν ¼ þ2) colors,
respectively. It can be seen that the winding number evolves
from ν ¼ −2 to ν ¼ þ2 as Δr evolves from negative to
positive. Δr ¼ 0 is a critical point for the unconventional
topological phase transition that occurs between two
nontrivial topological phases with opposite nonzero 2Z
winding numbers.
The projectivePT symmetry of the proposed 1D acoustic

crystals guarantees Kramers double-degenerate band struc-
tures for all Δr. To experimentally demonstrate this, we
fabricate three samples with different Δr (−2.2, 0, and
2.2 mm, respectively) and apply spatial Fourier transform to
the measured complex acoustic pressure distributions from
real space to reciprocal space. As shown in Figs. 2(g)–2(i),
for each sample, four Kramers double-degenerate bands are
observed in the entire BZ, and the measured results
(background colors) are in good agreement with the
simulated results (black solid and cyan dashed lines).
Then, we explore the Kramers pairs of topological

boundary modes supported by the proposed 1D acoustic
crystals. Based on the first-principles calculation, the
acoustic crystals with Δr ≠ 0 exhibit nontrivial spinful
topological phases with nonzero 2Z winding numbers.
Kramers pairs of topological boundary modes are guar-
anteed by the bulk-edge correspondence. To verify the
above prediction, we numerically calculate the eigenfre-
quency spectrum of a finite 1D acoustic crystal (15 unit
cells) with Δr ¼ 2.2 mm (see the tight-binding model
analysis in Supplemental Material [58]). As shown in
Fig. 3(a), two pairs of topological boundary modes
(colored dots) localized at the left or right ends can be
observed within the band gap of bulk states (gray squares),
which are termed as Kramers pairs of topological boun-
dary modes protected by space-time inversion symmetry
(see Supplemental Material), in contrast to recently
reported degenerate zero-energy topological states at
disclinations, as a result of the preservation of chiral
symmetry [73]. The inset in Fig. 3(a) shows the enlarged
frequency regime of the four topological boundary modes
(see Supplemental Material for detailed explanation on the
slight nondegeneracy of four topological boundary modes
and the corresponding optimization). The simulated acous-
tic pressure distributions of the four topological boundary
modes are plotted in Fig. 3(b), with each two of them
localizing at the same end and forming a Kramers pair.
Within each Kramers pair, two topological boundary
modes exhibit distinct phase distributions which are
indicated by “þ” and “−” signs, for instance, in-phase
modes at CS1 (CS3) and out-of-phase modes at CS2
(CS4). Moreover, these topological edge states are in
principle robust against any kind of disorders or

perturbations that preserve the projective PT symmetry
and sublattice symmetry (see detailed numerical studies in
Supplemental Material). For acoustic crystal with ν ¼ −2,
its simulated Kramers pairs of topological boundary
modes are presented in Supplemental Material. Note that
the sign of the winding number only affects the acoustic
field distributions of the Majorana-like Kramers pairs.
We then experimentally demonstrate the Kramers pairs

of topological boundary modes. The sample is artificially
divided into two nonoverlapping parts: the “edge” region
consists of 8 cylindrical resonators at both ends of the
acoustic crystal and the “bulk” region consists of the
remaining 112 resonators. The measured results are shown
in Fig. 3(c) (see experimental details for measuring the
average intensity in Supplemental Material [58]), from
which we can observe that within the bulk band gap regime
(about 8.3–8.5 kHz), the measured intensity spectrum of
the edge region remains much higher than that of the bulk
region, indicating the existence of edge states. Moreover,
the measured peak frequency ranges of the edge and bulk
regions match well with the simulated eigenfrequency
spectrum shown in Fig. 3(a). See the measurement methods
in Supplemental Material [58].

0.0

1.0

7.4 7.8 8.2 8.6 9.0

).u.a( ytisnetnI egarev
A

 Edge
 Bulk

Frequency (kHz)

y

z

CS3

(b)

(d)

…

(c)

Lower
band

Upper
band 

Band
gap

CS1

CS2

CS1 CS2

CS2S2

S1 CS1

CS2

Edge
Bulk

(a)

CS4

CS3

CS4

y

z

y

z

–Max Max
p 

CS3

CS1

CS4

y

z

CS3

CS4 S4

S3

…

… …

0 40 80 120
7.8

8.2

8.6

9.0

)z
Hk( ycneuqerF

Mode Index

FIG. 3. Observation of Kramers pairs of topological boundary
modes. (a) Simulated eigenfrequency spectrum of a finite-size 1D
acoustic crystal (15 unit cells); eigenstates can be classified as
bulk modes (gray squares) and boundary modes (color dots).
Inset: enlarged frequency regime of boundary modes. (b) Simu-
lated acoustic pressure distributions of two pairs of Kramers
topological boundary modes. (c) Measured averaged intensity
spectra for bulk (gray) and edge (red) regions; the simulated band
gap is highlighted by a red frame. (d) Measured acoustic pressure
distributions of two pairs of Kramers topological boundary
modes. Insets: excitation sources (S1, S2, S3, and S4) and
measured acoustic pressure distributions at four cross sections
(CS1, CS2, CS3, and CS4). Colored stars indicate the position
and phase of the excitation source. Colored circles with “þ”
and “−” signs indicate the acoustic pressure distributions
and symmetry of the excited boundary modes at each cross
section.
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We also experimentally map the acoustic pressure
distributions of the Kramers pairs of topological boundary
modes. Using two acoustic point sources (indicated by red
or blue stars) with designed phases difference (0 or π)
placed at the left or right edges of the 1D acoustic crystal,
we selectively excite each pair of topological boundary
modes that possess different mode symmetries. Figure 3(d)
shows the measured acoustic pressure distributions of the
Kramers pairs of topological boundary modes localized on
the left or right edges of the 1D acoustic crystal, matching
well with the simulated results shown in Fig. 3(b).
Moreover, each pair of the measured topological edge
states with their acoustic pressure localized on the same
edge (left or right) exhibits almost the same eigenfrequency
but different phase distributions (indicated by “þ” and “−”
signs), as shown in CS1 and CS2 (or CS3 and CS4). The
experimental observations of Kramers pairs of topological
boundary modes together with Kramers double-degenerate
band structures, which were previously unique to spinful
systems, demonstrate the realization of spinful topological
phases in spinless acoustic crystals. For comparison, the
simulated average intensity and acoustic pressure distribu-
tions of topological edge states excited by a phased source
array can be found in Supplemental Material [58].
Finally, we demonstrate the topological interface states

between two nontrivial spinful topological phases with

opposite winding numbers (ν ¼ �2). Figure 4(a) shows the
fabricated sample, which consists of 8 unit cells with
winding number ν ¼ −2 on the left side and 8 unit cells
with winding number ν ¼ þ2 on the right side, and the red
plane indicates the interface. According to the bulk-edge
correspondence, the total number of topological interface
states should be exactly equal to the difference between the
winding numbers of two nontrivial topological acoustic
crystals. Indeed, four topological interface states (colored
stars) emerge within the bulk (gray squares) band gap of the
simulated eigenfrequency spectrum of the sample, as
shown in Fig. 4(b). Using the pump and probe method,
we measure the average intensity of the “interface” (red
color) and “bulk” (gray color) regions, as shown in
Fig. 4(c). We observe that the intensity peak of the interface
region is located within the bulk band gap, implying the
existence of topological interface states. Following a
similar procedure used to probe the four topological edge
states, we plot the simulated [Fig. 4(d)] and measured
[Fig. 4(e)] acoustic pressure distributions of the topological
interface states, which are localized in the vicinity of the
sample interface and decay exponentially away from it.
In conclusion, we have experimentally realized spinful

topological phases in “spinless” acoustic crystals, breaking
the fundamental constraint on topological phase classifi-
cation by the spin class. By introducing negative and
positive couplings to engineer an equivalent Z2 gauge
field in acoustic crystals, the projective PT symmetry can
completely modify the fundamental symmetry algebra of a
system, making an originally spinless system behave like a
spinful one. We observe the Kramers double-degenerate
band structures and the Kramers pairs of topological
boundary modes in acoustic crystals, which were previ-
ously unique to spinful systems. Moreover, the double-
degenerate topological states not only can act as ideal
carriers of acoustic information transport with multiple
transmission channels, but also can increase the density of
states [73] which may have promising potential applica-
tions in phononic lasing [74,75] and sound power emission
[76]. Though we choose acoustic crystals as a versatile
platform for proof of principles, this protocol is general and
can be directly extended to other spinless systems such as
photonics, mechanics, and electronic circuits. This para-
digm of projective symmetry reveals new perspectives on
topological phase classification and opens the door to a vast
landscape of unexplored topological physics with gauge
degrees of freedom.
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